Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 36(2): 427-446, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37851863

RESUMO

In the presence of pathogenic bacteria, plants close their stomata to prevent pathogen entry. Intracellular nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogenic effectors and activate effector-triggered immune responses. However, the regulatory and molecular mechanisms of stomatal immunity involving NLR immune receptors are unknown. Here, we show that the Nicotiana benthamiana RPW8-NLR central immune receptor ACTIVATED DISEASE RESISTANCE 1 (NbADR1), together with the key immune proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (NbEDS1) and PHYTOALEXIN DEFICIENT 4 (NbPAD4), plays an essential role in bacterial pathogen- and flg22-induced stomatal immunity by regulating the expression of salicylic acid (SA) and abscisic acid (ABA) biosynthesis or response-related genes. NbADR1 recruits NbEDS1 and NbPAD4 in stomata to form a stomatal immune response complex. The transcription factor NbWRKY40e, in association with NbEDS1 and NbPAD4, modulates the expression of SA and ABA biosynthesis or response-related genes to influence stomatal immunity. NbADR1, NbEDS1, and NbPAD4 are required for the pathogen infection-enhanced binding of NbWRKY40e to the ISOCHORISMATE SYNTHASE 1 promoter. Moreover, the ADR1-EDS1-PAD4 module regulates stomatal immunity in Arabidopsis (Arabidopsis thaliana). Collectively, our findings show the pivotal role of the core intracellular immune receptor module ADR1-EDS1-PAD4 in stomatal immunity, which enables plants to limit pathogen entry.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Nicotiana/genética , Lipase/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidrolases de Éster Carboxílico/genética , Imunidade Vegetal/genética , Doenças das Plantas/microbiologia
2.
PLoS One ; 17(7): e0271177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830425

RESUMO

BACKGROUND: The diabetes mellitus prevalence is rapidly increasing in most parts of the world and has become a vital health problem. Probiotic and herbal foods are valuable in the treatment of diabetes. METHODS AND PERFORMANCE: In this study, Bacillus licheniformis (BL) and Astragalus membranaceus extract (AE) were given with food to InR[E19]/TM2 Drosophila melanogaster, and the blood glucose, antioxidation activity and intestinal microbiota were investigated. The obtained results showed that BA (BL and AE combination) supplementation markedly decreased the blood glucose concentration compared with the standard diet control group, accompanied by significantly increased enzymatic activities of catalase (CAT), decreased MDA levels and prolonged lifespan of InR[E19]/TM2 D. melanogaster. The treatments with BL, AE and BA also ameliorated intestinal microbiota equilibrium by increasing the population of Lactobacillus and significantly decreasing the abundance of Wolbachia. In addition, clearly different evolutionary clusters were found among the control, BL, AE and BA-supplemented diets, and the beneficial microbiota, Lactobacillaceae and Acetobacter, were found to be significantly increased in male flies that were fed BA. These results indicated that dietary supplementation with AE combined with BL not only decreased blood glucose but also extended the lifespan, with CAT increasing, MDA decreasing, and intestinal microbiota improving in InR[E19]/TM2 D. melanogaster. CONCLUSION: The obtained results showed that dietary supplementation with BL and AE, under the synergistic effect of BL and AE, not only prolonged the lifespan of InR[E19]/TM2 D. melanogaster, increased body weight, and improved the body's antiaging enzyme activity but also effectively improved the types and quantities of beneficial bacteria in the intestinal flora of InR[E19]/TM2 D. melanogaster to improve the characteristics of diabetes symptoms. This study provides scientific evidence for a safe and effective dietary therapeutic method for diabetes mellitus.


Assuntos
Bacillus licheniformis , Microbioma Gastrointestinal , Animais , Antioxidantes/farmacologia , Astragalus propinquus , Bacillus licheniformis/fisiologia , Glicemia , Dieta , Suplementos Nutricionais/análise , Drosophila melanogaster/microbiologia , Masculino
3.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672337

RESUMO

Runt-related transcription factor-3 (Runx3) is a tumor suppressor, and its contribution to melanoma progression remains unclear. We previously demonstrated that Runx3 re-expression in B16-F10 melanoma cells changed their shape and attenuated their migration. In this study, we found that Runx3 re-expression in B16-F10 cells also suppressed their pulmonary metastasis. We performed microarray analysis and uncovered an altered transcriptional profile underlying the cell shape change and the suppression of migration and metastasis. This altered transcriptional profile was rich in Gene Ontology/Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) annotations relevant to adhesion and the actin cytoskeleton and included differentially expressed genes for some major extracellular matrix (ECM) proteins as well as genes that were inversely associated with the increase in the metastatic potential of B16-F10 cells compared to B16-F0 melanoma cells. Further, we found that this altered transcriptional profile could have prognostic value, as evidenced by myelin and lymphocyte protein (MAL) and vilin-like (VILL). Finally, Mal gene expression was correlated with metastatic potential among the cells and was targeted by histone deacetylase (HDAC) inhibitors in B16-F10 cells, and the knockdown of Mal gene expression in B16-F0 cells changed their shape and enhanced the migratory and invasive traits of their metastasis. Our study suggests that self-entrapping of metastatic Runx3-negative melanoma cells via adhesion and the actin cytoskeleton could be a powerful therapeutic strategy.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core/genética , Melanoma Experimental/genética , Melanoma Experimental/patologia , Animais , Movimento Celular/genética , Forma Celular/genética , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Camundongos Endogâmicos C57BL , Proteínas Proteolipídicas Associadas a Linfócitos e Mielina/genética , Neoplasias/genética , Neoplasias/mortalidade , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...